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Abstract

We demonstrate a high efficiency organic electrophosphorescent device comprised of a 4,4’,4”-tris(3-methylphenyl-
phenylamino)triphenylamine (m-MTDATA) hole transport layer and a 4,4'-N,N’-dicarbazole-biphenyl (CBP) host
doped with the metallorganic phosphor, fac-tris(2-phenylpyridine)iridium (Ir(ppy);) as the green light-emitting layer.
The device exhibits peak external quantum and power efficiencies of (12.0 + 0.6)% and (45 + 2) Im/W, respectively,
corresponding to ~60% internal quantum efficiency. A Iuminance of 1850 cd/m? is observed at a current density of 10
mA/cm?. The device operating properties are controlled by electron injection into, and transport by the CBP layer along
with hole injection from m-MTDATA directly into the Ir(ppy); highest occupied molecular level, leading to direct
carrier recombination and exciton formation on the phosphor dopant. Ambipolar conduction properties of the
Ir(ppy);:CBP layer are established by analysis of triplet-triplet annihilation, exciton formation and the luminance—

current—voltage characteristics. © 2001 Published by Elsevier Science B.V.

PACS: 72.80.L; 78.60.F; 85.60.J; 33.50.D
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High efficiency organic light emitting devices
(OLEDs) using the phosphorescent dopant, fac-
tris(2-phenylpyridine)iridium (Ir(ppy)s), have been
demonstrated using several different conducting
host materials [1-7]. Since the triplet level of the
metal-ligand charge transfer state [8] of the green-
emitting Ir(ppy)s is between 2.5 and 3.0 eV, deep
blue fluorophores with a peak wavelength of Ay ~
400 nm, such as 4,4'-N,N’-dicarbazole-biphenyl
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(CBP) [2-4,9], are likely candidates as triplet en-
ergy transfer and exciton confining media. Us-
ing 6% to 10% Ir(ppy); in CBP leads to efficient
Ir(ppy)s phosphorescence [3,4]. In addition to the
energetic resonance between the dopant and the
host, the control of charge carrier injection and
transport in the host layers is necessary for achiev-
ing efficient formation of radiative excitons [2,3,5].
Indeed, high electrophosphorescence efficiency has
been achieved using Ir(ppy); doped into CBP along
with a 2,9-dimethyl-4,7-diphenyl-phenanthroline
(BCP) electron transport and exciton blocking
layer [3]. In that device, the doped CBP layer was
found to readily transport holes.
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Here, we demonstrate that CBP can also serve
as an electron transporting host in a considerably
simplified bilayer structure consisting of an indium
tin oxide (ITO) anode, a 4,4',4"-tris(3-methylphe-
nylphenylamino)triphenylamine  (m-MTDATA)
[10] hole injection layer (HIL), an ambipolar
conductive Ir(ppy);:CBP emissive layer, and a
MgAg/Ag cathode. This simplified OLED exhibits
an external quantum efficiency (1) and power
efficiency (1,) comparable to the best results
obtained for more complex heterostructure elec-
trophosphorescent OLEDs [2,3,5]. To investigate
the ambipolar transport characteristics of the CBP
layers, we determine the locations of the exciton
formation zones in two archetype device struc-
tures.

Devices studied were fabricated as follows: the
organic layers were deposited by high-vacuum (1 x
107® Torr) thermal evaporation onto a pre-cleaned
ITO coated glass substrate with an ITO sheet re-
sistance of ~20 Q/OJ. Prior to film deposition, the
substrate was solvent degreased and cleaned in a
UV-ozone chamber before it was loaded into the
deposition system. For device I, a 50 nm-thick
layer of m-MTDATA was first deposited, followed
by a 60 nm-thick Ir(ppy);:CBP light emitting and
transport layer. Previously [11], m-MTDATA
has been identified as effective in promoting in-
jection of holes from ITO into hole transport
layers (HTL) consisting of, for example 4,4'-bis[ V-
(naphthyl)-N-phenyl-amino]biphenyl (a-NPD) or
N,N’-bis(3-methylphenyl)-N,N’-diphenyl-[1,1’-
biphenyl}4,4’-diamine (TPD), possibly due to re-
duction of the HTL highest occupied molecular
orbital (HOMO)/ITO offset energy, or to wetting
of the ITO surface. We fixed the Ir(ppy); concen-
tration at 7%, since this resulted in the highest 7.
A shadow mask with 1 mm diameter openings was
used to define the cathodes consisting of a 100 nm-
thick layer of 25:1 Mg:Ag with a 20 nm-thick
Ag cap. A conventional heterostructure device
(device II), consisting of ITO/a-NPD (50 nm)/7%-
Ir(ppy);:CBP (20 nm)/BCP (10 nm)/tris(8-hy-
droxyquinoline)aluminum (Alqs) (40 nm)/Mg-Ag
(100 nm)/Ag (20 nm) [3], was fabricated for com-
parison. To locate the exciton formation zone, we
employed a local doping technique [12—17] where a
thin 7%-Ir(ppy);:CBP light emissive slab was

grown into the CBP host layer at varying distances
between the cathode and anode contacts.

The energy level diagrams of devices I and 11
are shown in Fig. 1 [18,19]. The positions of the
Ir(ppy)s HOMO and lowest unoccupied molecular
orbital (LUMO) levels relative to those of CBP
were estimated using a combination of ultraviolet
photoelectron and optical absorption spectro-
scopy. Phosphorescence emission spectra of CBP
and m-MTDATA were obtained at 70 K using a
streak camera (Hamamatsu C4334) in the photon
counting mode. A nitrogen gas laser with a
wavelength of 2 = 337 nm (Laser Photonics, pulse
width ~500 ps) was used as excitation source.

Fig. 2 shows the dependencies of # and #, on
current (J) for the devices studied. In device 1, a
maximum #,,, = (12.0 £0.6)% and n, = (45 £2)
Im/W were obtained at low currents (J < 0.1 mA/
cm?), which is significantly higher than n,, =
(8.0 £ 0.6)% for device 1I. A luminance of 1850 cd/
m? is observed at a current density of 10 mA/cm?.
Thus, the simplified device architecture exhibits
efficient radiative decay of Ir(ppy); triplet excitons
due to balanced hole and electron injection into
the Ir(ppy);:CBP light emitting layer.

The gradual roll-off in 7, with increasing cur-
rent has previously been ascribed to triplet—triplet
(T-T) annihilation [20,21], in which case
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Here, ¢ is the electron charge, d is the thickness of
the exciton formation zone, t is the phosphores-
cent lifetime, and xpr is the T-T annihilation
quenching parameter. Now, 7., = 1, atJ = 0, and
when J = Jy, then ., = 1n,. From the figure (solid
lines), a best fit of the model to the data for devices
I and II gives Jogq) = 5.5 and Joq) = 200 mA/cm?,
respectively. The ratio of Jyar)/Jom) = 36 implies
that the width of the exciton formation zone (d) in
device I is significantly narrower than that of de-
vice II (thus leading to a high local concentration
of triplets and hence increased T-T annihilation),
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Fig. 1. Proposed energy level diagrams of two device structures showing the relative positions of the HOMO and LUMO levels of the
organic layers used in this study. The Ir(ppy); LUMO (3.0 eV) is aligned with the CBP LUMO, assuming that the singlet energy of the
metal-ligand charge transfer state is at 2.6 eV as obtained from the Ir(ppy); and CBP absorption spectra.

assuming that xrr is a material property indepen-
dent of excitation density and device structure [21].

To understand the origin of the high 7. in
device I, the location of the exciton formation zone
was determined by employing a 5 nm-thick 7%-
Ir(ppy);:CBP slab located at various positions
within the 20 nm-thick CBP transport layer. The
doped layer was systematically moved from the
m-MTDATA/Ir(ppy)s:CBP (device I) or a-NPD/
Ir(ppy)3:CBP (device II) interface to the cathode
side. Figs. 3 and 4 show the variations of 7, and
the electroluminescence spectra as functions of the
distance (d;) of the doped layer from these inter-
faces.

For device [ (filled circles in Fig. 3), 5., = (7.0+
0.5)% is obtained with d; = 0 nm, decreasing rap-
idly with increasing d;. Although only Ir(ppy);

triplet emission (A ~ 515 nm) was observed
for d; =0 nm (Fig. 4(a)), the contribution from
Ir(ppy)s gradually decreases, accompanied by an
increase of blue emission (with peaks at A, = 430
and A, =455 nm) with increasing d;. The blue
emission is due to m-MTDATA fluorescence, lead-
ing to two conclusions. The Ir(ppy);:CBP layer
predominantly (although not exclusively) trans-
ports electrons since carrier recombination and
exciton formation occur within 10 nm of the m-
MTDATA/Ir(ppy);:CBP interface. This is consis-
tent with the observation that the Ir(ppy); LUMO
energy is approximately equal to that of CBP (3.0
eV) (Fig. 1). Furthermore, Ir(ppy); excitons are
formed through direct hole injection from m-
MTDATA into the Ir(ppy);s HOMO levels. This is
apparent since the exciton formation zone moves
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Fig. 2. External quantum efficiency (7.x) versus current density for devices I (O) and II (OJ). A maximum 7., = 12.0 & 0.6% was
obtained in device L. The solid line is a fit of the triplet-triplet annihilation model of Egs. (1) and (2) to the data using J; = 5.5 mA/cm?
for device I and 200 mA/cm? for device II. Also shown is the power efficiency (17,,) versus current density for devices I (@) and 11 (H). A

maximum 7., = 45+ 3 Im/W was obtained for device I.
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Fig. 3. External quantum efficiency versus the thickness of the
CBP spacer layer (fex—ds) measured at J = 0.1 mA/cm? in de-
vices | (@) and II (). The thicknesses of the doped slab are 20
nm for device I and 5 nm for device II.

with d;. When the Ir(ppy);:CBP doped slab is
positioned away from the m-MTDATA/CBP in-
terface (d; = 10-40 nm), the spectra are composed

of both m-MTDATA and Ir(ppy); emission.
Therefore, holes partly accumulate in the m-
MTDATA layer in close proximity to the m-
MTDATA/CBP interface, and recombine with
electrons injected from CBP into m-MTDATA,
leading to m-MTDATA exciton formation along
with Ir(ppy); exciton formation in the Ir(ppy)s-
doped CBP slab. Hole accumulation at the m-
MTDATA/CBP interface results from the large
energy barrier (1.2 eV) between the HOMO levels
of m-MTDATA and CBP. At d, = 0 nm, on the
other hand, since we observe no m-MTDATA
emission, most holes are directly injected from the
m-MTDATA HOMO (5.1 eV) into the Ir(ppy)s
HOMO (5.6 eV) levels, which recombine with
electrons transported by CBP, leading to direct
Ir(ppy); exciton formation.

The m-MTDATA/CBP interface also plays an
important role in Ir(ppy); triplet exciton confine-
ment. The phosphorescence onset wavelengths of
CBP and m-MTDATA are at 475 and 490 nm,
which are comparable with the Ir(ppy); phospho-
rescent emission peak (Fig. 4(b)). Here, the relaxed
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Fig. 4. (a) Electroluminescent spectra of device I as a function
of CBP spacer layer thickness, d;. The peak emission wave-
lengths of m-MTDATA (Anax = 430 and 455 nm) and Ir(ppy);
(Amax = 515 nm) are indicated. (b) Phosphorescence spectra of
CBP (—) and m-MTDATA (- - -) films at 70 K. (c) As in (a) for
device II. The peak wavelength of a-NPD (L. = 440 and 455
nm) and Ir(ppy); (Amax = 515 nm) are indicated.

Ir(ppy)s triplet state is at a slightly lower energy
compared with the unrelaxed triplet states of CBP
and m-MTDATA, leading to efficient triplet exci-
ton confinement and radiative decay at the inter-
face. For example, when o-NPD and TPD are
employed as HTLs, we find 7., < 6% with an
appreciable contribution to the luminescence due
to HTL emission. Since the a-NPD LUMO (2.6
eV) is lower than that of m-MTDATA, electron
injection from Ir(ppy);:CBP into the HTL occurs,
leading to a reduction in #ey;.

We note that while the MgAg cathode injects
electrons into the doped CBP layer which trans-
ports electrons, the existence of Ir(ppy); lumines-
cence even for d; > 0 nm suggests that a neat CBP
layer also serves as a hole transporting medium
following injection from m-MTDATA.

For device II, a maximum #., = (8.0 £ 0.5)%
was observed when a 5 nm-thick Ir(ppy);:CBP
doped layer was placed close to the BCP layer
(filled squares in Fig. 3), suggesting that, in this
case, Ir(ppy);:CBP preferentially transports holes,
and exciton formation mainly occurs near the
Ir(ppy);:CBP/BCP interface. At both dy = 7.5 and
15 nm, the electroluminescence spectra are com-
prised of two components, Ir(ppy); emission at
Amax = 515 nm and o-NPD emission at Ay,, = 440
and 455 nm (Fig. 4(c)). The presence of a-NPD
emission again suggests hole accumulation at the
o-NPD/CBP interface when a neat CBP layer ex-
ists between these layers, leading to carrier re-
combination partly within the HTL.

The J-V characteristics in Fig. 5 show that both
devices I and II exhibit an abrupt current increase
immediately above the turn on voltage, Vr (=22.5
V). Device 1 has a slightly lower V't than does
device II due to the reduced voltage drop across
the simplified structure. As in the case of single
layer polymer devices [22,23], we find that the
onset of light emission also occurs at approxi-
mately V't which corresponds to the minimum po-
tential required to form an exciton on an Ir(ppy);
molecule.

In summary, we demonstrated that an
Ir(ppy);:CBP layer has ambipolar carrier trans-
port characteristics in two device structures. In
device I, electrons are injected from a Mg-Ag
cathode into CBP, and they subsequently traverse
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Fig. 5. Luminance—current density—voltage characteristics of devices I ((J) and II (A). Note that V¢ in device I corresponds to the
potential energy of the Ir(ppy); metal-ligand charge-transfer state energy.

the layer where they recombine with holes directly
injected from m-MTDATA into Ir(ppy); HOMO
levels. In the conventional heterostructure device
11, the carrier recombination zone is located near
the cathode, suggesting that the Ir(ppy);:CBP layer
also transports holes. Hence, depending on the
combination of the carrier injection layers adjacent
to the emitting layer, Ir(ppy);:CBP, can transport
either holes or electrons. Using this ambipolar
conduction property, an efficient and simple elec-
trophosphorescent OLED was demonstrated.
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